
Notes on Threshold EdDSA/Schnorr Signatures

Luís Brandão *

Talk at the NIST Crypto Reading Club
August 10, 2022 @ Maryland, USA

Joint work (NIST IR 8214B Draft) with Michael Davidson
Slide-deck in progress. Feedback is welcome.
* Strativia (At NIST as a Foreign Guest Researcher, Contractor not employed by NIST). Expressed opinions are from the speaker, not to be construed as official NIST views.

Outline

1. Conventional EdDSA/Schnorr

2. Threshold signatures

3. Considerations

2/26

Outline

1. Conventional EdDSA/Schnorr

2. Threshold signatures

3. Considerations

2/26

Digital signatures — FIPS Pub 186-5 (Draft)

▶ FIPS: Federal Information Processing Standards Publication
▶ Digital Signature Standard (DSS)
▶ 3 families of signature schemes: RSA, ECDSA, EdDSA
▶ EdDSA is the most recent (based on RFC 8032)

NIST name and address plate (source: nist.gov)

A signature scheme: (Keygen, Sign, Verify), based on public-key cryptography

“Digital signatures are used to detect unauthorized modifications to data and to
authenticate the identity of the signatory.” ... “non-repudiation since the signatory cannot
easily repudiate the signature at a later time.”

For later: “unforgeability” and “binding”

3/26

https://www.nist.gov/document/Mayfinalpdf

Digital signatures — FIPS Pub 186-5 (Draft)

▶ FIPS: Federal Information Processing Standards Publication
▶ Digital Signature Standard (DSS)
▶ 3 families of signature schemes: RSA, ECDSA, EdDSA
▶ EdDSA is the most recent (based on RFC 8032)

NIST name and address plate (source: nist.gov)

A signature scheme: (Keygen, Sign, Verify), based on public-key cryptography

“Digital signatures are used to detect unauthorized modifications to data and to
authenticate the identity of the signatory.” ... “non-repudiation since the signatory cannot
easily repudiate the signature at a later time.”

For later: “unforgeability” and “binding”

3/26

https://www.nist.gov/document/Mayfinalpdf

Digital signatures — FIPS Pub 186-5 (Draft)

▶ FIPS: Federal Information Processing Standards Publication
▶ Digital Signature Standard (DSS)
▶ 3 families of signature schemes: RSA, ECDSA, EdDSA
▶ EdDSA is the most recent (based on RFC 8032)

NIST name and address plate (source: nist.gov)

A signature scheme: (Keygen, Sign, Verify), based on public-key cryptography

“Digital signatures are used to detect unauthorized modifications to data and to
authenticate the identity of the signatory.” ... “non-repudiation since the signatory cannot
easily repudiate the signature at a later time.”

For later: “unforgeability” and “binding”

3/26

https://www.nist.gov/document/Mayfinalpdf

Notation for group operations

Multiplicative notation (traditional for finite fields):
Public key Q = gs, where:
▶ g is a generator of order n; s is the private key in Zn
▶ Assumption: infeasibility of computing discrete-logs (base g)

Additive notation (usual with elliptic curves):
Public key Q = s • G, where:
▶ G is a base-point of order n; s is the private key in Zn
▶ Assumption: cannot calculate the integer quotient from division with G

Let us proceed with additive notation

4/26

EdDSA-style scheme (simplified)

• Keygen[n]: { (private key) s←$ Zn; (public key) Q = s • G; output (s,Q) }.540

• Sign[s](M): {r← GenNonce(. . .); R = r • G; χ = H(R,Q,M);541

S = r+χ · s(mod n); output σ = (R,S)}.542

• Verify[Q](M,σ): {χ ′ = H(R,Q,M); output accept iff S • G =? R✚χ ′ • Q}543

Legend: χ (challenge); G (base point, i.e., generator of G); GenNonce(. . .) (procedure used to gen-
erate the secret nonce); M (message being signed); n (order of the group generated by G); Q (public
key); r (secret nonce); R (nonce commitment; first component of the signature); s (private signing
key; in the detailed scheme it is obtained as a digest — hdigest1 — of a precursor private key d); S
(second component of the signature); σ (signature); ←$ (random sampling); +, · (integer sum and
multiplication); ✚, • (sum and multiplication-by-constant in additive group G).

544

545

546

547

548

549

Fig. 2. (Simplified) EdDSA-style scheme, with generic nonce551 Schnorr-style [Sch90; BDLSY11]: simple, efficient, some variations (but rationale is similar)
5/26

The EdDSA signature formula σ = (R, S)

σ =
(

r •G , r+H
(
R , Q , M

)
·s

)
EdDSA signature

Secret nonce r = H(ν ,M)

Base point (generator of order n)

Hash function
Public verification key Q = s • G

Message being signed

Private signing key

Nonce “commitment” R = r • G

“Challenge” χ = H(R,Q,M) S (2nd component of the signature)

Fig. 1. Annotated formula of an EdDSA signature486
Note: The HashEdDSA mode pre-hashes the message

Verification: 0 ≤ S ≤ n ∧ S′ • G =? R′ ✚ χ′ • Q (note that = r • G✚ χ • (s • G))

Where S′ = 2c • S, R′ = 2c • R, χ′ = 2c • χ (a.k.a. cofactored verification)

6/26

The EdDSA signature formula σ = (R, S)

σ =
(

r •G , r+H
(
R , Q , M

)
·s

)
EdDSA signature

Secret nonce r = H(ν ,M)

Base point (generator of order n)

Hash function
Public verification key Q = s • G

Message being signed

Private signing key

Nonce “commitment” R = r • G

“Challenge” χ = H(R,Q,M) S (2nd component of the signature)

Fig. 1. Annotated formula of an EdDSA signature486
Note: The HashEdDSA mode pre-hashes the message

Verification: 0 ≤ S ≤ n ∧ S′ • G =? R′ ✚ χ′ • Q (note that = r • G✚ χ • (s • G))

Where S′ = 2c • S, R′ = 2c • R, χ′ = 2c • χ (a.k.a. cofactored verification)

6/26

The EdDSA signature formula σ = (R, S)

σ =
(

r •G , r+H
(
R , Q , M

)
·s

)
EdDSA signature

Secret nonce r = H(ν ,M)

Base point (generator of order n)

Hash function
Public verification key Q = s • G

Message being signed

Private signing key

Nonce “commitment” R = r • G

“Challenge” χ = H(R,Q,M) S (2nd component of the signature)

Fig. 1. Annotated formula of an EdDSA signature486
Note: The HashEdDSA mode pre-hashes the message

Verification: 0 ≤ S ≤ n ∧ S′ • G =? R′ ✚ χ′ • Q (note that = r • G✚ χ • (s • G))

Where S′ = 2c • S, R′ = 2c • R, χ′ = 2c • χ (a.k.a. cofactored verification)

6/26

Unforgeability

Unforgeability (UF): Malicious client cannot win the following game:

▶ Client (with access to signing oracle) gets q message–signature pairs (Mi, σi)

▶ Client (without oracle) produces a valid sig σ∗ for a new message M∗

EUF-CMA: existential unforgeability against chosen message attack [GMR88]

Strong UF (SUF): cannot find new pair (σ∗,M∗) (even if msg was already signed) [CD95]

Technical note (feel free to ignore):
▶ A signature is like a ZKP of knowledge of the signing key (e.g., discrete-log).
▶ Usually provable with rewinding, when interactive (random challenge each time).
▶ Non-interactive case: random oracle model / forking lemma.

7/26

Unforgeability

Unforgeability (UF): Malicious client cannot win the following game:

▶ Client (with access to signing oracle) gets q message–signature pairs (Mi, σi)

▶ Client (without oracle) produces a valid sig σ∗ for a new message M∗

EUF-CMA: existential unforgeability against chosen message attack [GMR88]

Strong UF (SUF): cannot find new pair (σ∗,M∗) (even if msg was already signed) [CD95]

Technical note (feel free to ignore):
▶ A signature is like a ZKP of knowledge of the signing key (e.g., discrete-log).
▶ Usually provable with rewinding, when interactive (random challenge each time).
▶ Non-interactive case: random oracle model / forking lemma.

7/26

Binding
Now suppose the signer is the malicious party (adv)

Binding (to message): Can adv repudiate having signed a msg M?
▶ If UF, and bound to public key Q, then it cannot
▶ Unless it finds a hash collision χ = H(R,Q,M) = H(R,Q,M′)

Strong binding (to message/pubkey): What if adv can lie about the public key Q?
▶ Can it find two pairs (M,Q) and (M∗,Q∗) and a signature σ valid for both?
▶ It can (details omitted here), if one key is invalid (but there’s no check for it)

EdDSA would be strong binding (resistant to key-substitution attack):
▶ if additionally checking |Q| > 2c [BCJZ21; CGN20]

8/26

Nonce implementation issues

Nonce reuse: Suppose the nonce r is reused when EdDSA-signing different messages.

▶ σ = (R,S), where S = r + χ · s and χ = H(...M)

▶ σ∗ = (R,S∗), where S∗ = r + χ∗ · s and χ∗ = H(...M′)

Then the private key s follows from solving a pair of linear equations with two unknowns

▶ S∗ − S = (χ∗ − χ) · s (mod n),
▶ s = (S∗ − S) · (χ∗ − χ)−1 (mod n)

It gets worst:
▶ Even a small nonce-bias (partial knowledge) allows key recovery
▶ Nonce reuse/bias is also catastrophic for ECDSA

9/26

Comparing types of nonce generation

EdDSA specifies pseudorandom nonce generation r = H(ν,M), which:
▶ avoids nonce-bias, but is more susceptible to some side-channel attacks

If recovering ν, then from a message-signature pair can compute the signing key s:
▶ s = χ−1 · (S − r) (mod n), where r = H(ν,M)

Table 7. Types of nonce generation830

831 Nonce generation type Bias
attacks

Side-channel and
fault injection attacks

832 Deterministic: Pseudorandom, based on a secret key Safe More vulnerable

833 Purely random: Entropy independent of secret key Vulnerable Less vulnerable

834 Combined use: Randomness and pseudo-randomness Safe Less vulnerable

10/26

Comparing types of nonce generation

EdDSA specifies pseudorandom nonce generation r = H(ν,M), which:
▶ avoids nonce-bias, but is more susceptible to some side-channel attacks

If recovering ν, then from a message-signature pair can compute the signing key s:
▶ s = χ−1 · (S − r) (mod n), where r = H(ν,M)

Table 7. Types of nonce generation830

831 Nonce generation type Bias
attacks

Side-channel and
fault injection attacks

832 Deterministic: Pseudorandom, based on a secret key Safe More vulnerable

833 Purely random: Entropy independent of secret key Vulnerable Less vulnerable

834 Combined use: Randomness and pseudo-randomness Safe Less vulnerable

10/26

On non-verifiable determinism
Table 5. Determinism vs. verifiable determinism of signature schemes567

568 Signature scheme Is the signature
algorithm deterministic?

Is the output signature
verifiably deterministic?

569 RSASSA-PKCS Yes Yes

570 EdDSA Yes No
571 Deterministic ECDSA Yes No

572 RSA-PSS No No

573 (Probabilistic) ECDSA No No

11/26

Summary of conventional setting

▶ Schnorr-style signatures are well-known and been around for a while

▶ EdDSA Unforgeable?: SUF (the verification details matter)

▶ EdDSA Binding?: (the verification details matter)
▶ if assumed pub-key bound ⇒ message binding
▶ Otherwise no (missing check)

▶ EdDSA Deterministic?: non-verifiably

▶ Nonce implementation issues?:
▶ Pseudorandom EdDSA: no bias, some susceptibility to side-channel attack
▶ Purely random variant: inadvertent bias is catastrophic
▶ Hybrid variant: best of both worlds

12/26

Outline

1. Conventional EdDSA/Schnorr

2. Threshold signatures

3. Considerations

13/26

Threshold approach — intuition
A linear secret-sharing of x is denoted as [x] = ⟨x1, x2, ..., xn ⟩. x = Reconst([x])

The threshold signing follows trivially once having:
▶ Linear secret-sharing [s] of the private signing key s.
▶ Linear secret-sharing [r] of a random secret nonce r.

Phase Conventional Semi-honest threshold baseline
Key-Gen Q = s • G [Q] = [s] • G;
Commit nonce R = r • G [R] = [r] • G; then R = Reconst([R])
Compute challenge χ = H(R,Q,M) Same as in conventional
Produce signature S = r + χ · s (mod n) [S] = [r] + χ · [s] (mod n); then S = Reconst([S])
Verify signature S • G =? R✚ χ • Q Same as in conventional

(Simplification: Lagrange coefficients were omitted above. The above actually holds for Additive SS.)

14/26

Threshold approach — intuition
A linear secret-sharing of x is denoted as [x] = ⟨x1, x2, ..., xn ⟩. x = Reconst([x])

The threshold signing follows trivially once having:
▶ Linear secret-sharing [s] of the private signing key s.
▶ Linear secret-sharing [r] of a random secret nonce r.

Phase Conventional Semi-honest threshold baseline
Key-Gen Q = s • G [Q] = [s] • G;
Commit nonce R = r • G [R] = [r] • G; then R = Reconst([R])
Compute challenge χ = H(R,Q,M) Same as in conventional
Produce signature S = r + χ · s (mod n) [S] = [r] + χ · [s] (mod n); then S = Reconst([S])
Verify signature S • G =? R✚ χ • Q Same as in conventional

(Simplification: Lagrange coefficients were omitted above. The above actually holds for Additive SS.)

14/26

Distributed key-generation (DKG)

Intuition: DKG with verifiable secret sharing [GJKR99]

Verifiable SS of some x: besides each private share xj for party j, everyone sees
“commitments” Xi = xi • G of everyone’s shares, i.e., [x] · G

Approach (with a caveat):
▶ Each party Pi picks a random value xi and secret-shares it with everyone ([xi])
▶ Each party decides their final share as the sum of all received shares
▶ Each party verifies everything (using the VSS verifiability)

More technicalities needed:
▶ Prevent anyone from manipulating (bias) the final public key Q
▶ Ensure termination (prevent bias by abort)

15/26

Threshold Schnorr signing using a DKG-based approach

DKG = distributed key-generation. Used by [SS01] for threshold Schnorr.

▶ Phase 0: The keygen phase has verifiably secret-shared a signing key s.
▶ And everyone learns [Q] = [s] • G, which determines Q.

▶ Phase 1: Use DKG to get a random nonce verifiable secret-sharing [r]
▶ And everyone learns [R] = [r] • G

▶ Phase 2: Signature-shares and reconstruction:
▶ Each party communicates their signature share: Si = ri + χ · si

▶ Someone combines the shares σ = (Recons([R]),Recons([S]))

16/26

An attempt at threshold Deterministic

Naive solution:
▶ Every party Pi uses a deterministic nonce contribution ri = H(ν,M).
▶ Final nonce commitment is R = Reconst([r] • G)

Problem:
▶ Malicious Pj varies their nonce contribution rj, to affect R and thus χ = H(R,Q,M)

Key recovery pitfall — After just two signings of the same message M:
▶ Honest signature-share 1st time: Si = ri + χ · si

▶ Honest signature-share 2ns time: S∗
i = ri + χ ∗ ·si

▶ Adversary recovers si = (χ− χ∗) · (Si − S∗
i)

17/26

Threshold Deterministic Signatures

▶ MPC-based nonce computation
▶ Generic MPC for distributed computation of SHA512-based nonce
▶ Distributed hashing using an MPC-friendly hash

▶ Local deterministic contributions (per party), ZK-proven correct
▶ PRF based on AES (less ZKP-unfriendly than SHA512)
▶ ZKP friendly PRF

Table 9. Deterministic threshold approaches1085

1086

Reference

Func-
tionally
equiva-

lent?

EdDSA
Inter-

change-
able?

Fixed
public
key?

Deterministic?

Some gadgets
1087

Per subset
of signa-

tories

Across
reshar-

ings

1088 [BST21, §5] Yes Yes Yes Yes Yes MPC gadgets
1089 [BST21, §6] No Yes Yes Yes Yes MPC-friendly hash
1090 [GKMN21] No Yes Yes Yes No ZKGC, COT
1091 [NRSW20] No Yes No Yes N/A ZKP-friendly PRF

⋆Updated table

⋆Which ones do
HashEdDSA?

Some schemes implement the HashEdDSA mode (see Table 6). In the multi-sig case [NRSW20],
the “No” in “fixed public key” means it changes with the subset of cosigners; the “N/A” means not
applicable, since in a resharing the party also changes its public key; COT = committed oblivious
transfer. ZKGC = ZKPs from garbled circuits. The approaches also differ in efficiency, allowed
thresholds, and cryptographic assumptions.

1092

1093

1094

1095

1096

⋆ table

18/26

Threshold Deterministic Signatures

▶ MPC-based nonce computation
▶ Generic MPC for distributed computation of SHA512-based nonce
▶ Distributed hashing using an MPC-friendly hash

▶ Local deterministic contributions (per party), ZK-proven correct
▶ PRF based on AES (less ZKP-unfriendly than SHA512)
▶ ZKP friendly PRF

Table 9. Deterministic threshold approaches1085

1086

Reference

Func-
tionally
equiva-

lent?

EdDSA
Inter-

change-
able?

Fixed
public
key?

Deterministic?

Some gadgets
1087

Per subset
of signa-

tories

Across
reshar-

ings

1088 [BST21, §5] Yes Yes Yes Yes Yes MPC gadgets
1089 [BST21, §6] No Yes Yes Yes Yes MPC-friendly hash
1090 [GKMN21] No Yes Yes Yes No ZKGC, COT
1091 [NRSW20] No Yes No Yes N/A ZKP-friendly PRF

⋆Updated table

⋆Which ones do
HashEdDSA?

Some schemes implement the HashEdDSA mode (see Table 6). In the multi-sig case [NRSW20],
the “No” in “fixed public key” means it changes with the subset of cosigners; the “N/A” means not
applicable, since in a resharing the party also changes its public key; COT = committed oblivious
transfer. ZKGC = ZKPs from garbled circuits. The approaches also differ in efficiency, allowed
thresholds, and cryptographic assumptions.

1092

1093

1094

1095

1096

⋆ table

18/26

Threshold Probabilistic Signatures

Classical approaches (more rounds): DKG-based

Recent efforts (lower number of rounds):

▶ k-sum attack [DEFKLNS19] broke older 2-round protocols (concurrent setting)

– Malicious Pi in execution k is last to contribute Rk
i , affecting Rk and χk = H(Rk,Q,Mk)

to achieve R∗ =
∑

k Rk such that χ∗ =
∑

k χ
k (k-sum problem)

▶ 2 rounds game-based UF: prevent k-sum by using multiple nonce-contributions and
nonce-binding to message [KG21; NRS21; AB21; CKM21]

▶ 3 rounds simulatable: directly prevents manipulation of nonce-commitment R (with
extra commitment round) [Lin22]

19/26

Threshold comparison (informal)
Table 10. Types of signature vs. concern — informal assessment1776

 Signature
mode

Nonce
generation

Attack of
Concern

Informal assessment

 Conventional Threshold

Deterministic Pseudorandom

Bias Safe Safe

 Side channel More vulnerable Safer

Probabilistic Randomized

Bias Vulnerable Safer

 Side channel Less vulnerable Safer

Hybrid

Bias Safe Safe

 Side channel Less vulnerable Safer

The use of “Less” and “More” preceding “vulnerable” is only for comparison within the side-channel attack
concern. Each “Safer” is meant in comparison with the assessment of the conventional setting in the same
row. In the threshold setting, the assessment does not relate to the corruptibility of individual parties, but rather
to unforgeability property when assumed that the number of corrupted parties is within the allowed threshold.
This informal table is meant only to provide intuition; more context is needed for formal conclusions about
each concrete signature scheme.

(Other aspects to consider: efficiency, assumptions, threshold parameters, ...)

20/26

Outline

1. Conventional EdDSA/Schnorr

2. Threshold signatures

3. Considerations

21/26

Draft IR 8214B

▶ Analyzes the properties of conventional EdDSA

▶ Distinguishes various approaches for threshold
interchangeable schemes w.r.t. EdDSA verification.
Compares probabilistic vs. deterministic.

▶ Identifies aspects that would benefit from more
attention (security formulation, WBBR parties,
interfaces, adaptive corruptions, ...)

▶ Some considerations are generic to other schemes

▶ We expect to receive technical feedback

Internal draft 2022-08-10

NIST Internal Report

NIST IR 8214B ipd

Notes on Threshold EdDSA/Schnorr Signatures

Luís T. A. N. Brandão

Michael Davidson

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8214B.ipd

22/26

Developments

An attack and various followup threshold protocols have appeared in the past few years

What would be good to learn with the community:

▶ Detailed security formulations, technical descriptions, reference implementations
▶ More emphasis on SUF (some works have only looked at UF)
▶ More explicit addressing of well behaved parties with bad randomness (WBBR)
▶ Concerns with manipulation of nonce commitment?
▶ Actual implementations of broadcast and agreement

Aim: Enable develop recom./guidelines about threshold schemes (not concrete standards)

23/26

Thank you for your attention!

Questions?

Notes on Threshold EdDSA/Schnorr Signatures
Upcoming Draft NIST IR 8214B

(This slide-deck is still a work in progress)

24/26

References
[AB21] Handan Kılınç Alper and Jeffrey Burdges. “Two-round trip schnorr multi-signatures via delinearized witnesses”. In: Advances in Cryptology — CRYPTO 2021. Springer. 2021. doi:

10.1007/978-3-030-84242-0_7. Also at ia.cr/2020/1245 (Cited on p. 28).

[BCJZ21] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. “The Provable Security of Ed25519: Theory and Practice”. In: Symposium on Security and Privacy (SP) (2021). doi:
10.1109/SP40001.2021.00042. Also at ia.cr/2020/823 (Cited on p. 14).

[BDLSY11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-Speed High-Security Signatures”. In: Cryptographic Hardware and Embedded Systems — CHES 2011. Springer
Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-23951-9_9. Also at Journal of Cryptographic Engineering, vol. 2, pp. 77–89 (2012), 10.1007/s13389-012-0027-1. Also at ia.cr/2011/368 (Cited on
p. 8).

[CD95] Ronald Cramer and Ivan Damgård. “Secure Signature Schemes based on Interactive Protocols”. In: Advances in Cryptology — CRYPTO’ 95. Springer Berlin Heidelberg, 1995. doi:
10.1007/3-540-44750-4_24. Also at BRICS Report Series, 1(29), 1994, DOI:10.7146/brics.v1i29.21637 (Cited on pp. 12, 13).

[CGN20] Konstantinos Chalkias, François Garillot, and Valeria Nikolaenko. “Taming the Many EdDSAs”. In: International Conference on Security Standardisation Research. Springer, 2020. doi:
10.1007/978-3-030-64357-7_4. Also at ia.cr/2020/1244 (Cited on p. 14).

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures. Cryptology ePrint Archive, Report ia.cr/2021/1375. 2021
(Cited on p. 28).

[DEFKLNS19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs. “On the Security of Two-Round Multi-Signatures”. In: 2019 IEEE Symposium on Security
and Privacy (SP) (2019). doi: 10.1109/SP.2019.00050. Also at ia.cr/2018/417 (Cited on p. 28).

[GJKR99] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. “Secure Distributed Key Generation for Discrete-Log Based Cryptosystems”. In: Advances in Cryptology — EUROCRYPT’99.
Springer-Verlag, 1999. doi: 10.1007/3-540-48910-X_21. See also J. Cryptology 20, pp. 51–83, 2007, DOI:10.1007/s00145-006-0347-3 (Cited on p. 23).

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks”. In: SIAM Journal on Computing 17.2 (1988). doi:
10.1137/0217017 (Cited on pp. 12, 13).

[KG21] Chelsea Komlo and Ian Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold Signatures”. In: (2021). doi: 10.1007/978-3-030-81652-0_2. Also at ia.cr/2020/852 (Cited on p. 28).

[Lin22] Yehuda Lindell. Simple Three-Round Multiparty Schnorr Signing with Full Simulatability. Cryptology ePrint Archive Report ia.cr/2022/374. 2022 (Cited on p. 28).

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. “MuSig2: Simple Two-Round Schnorr Multi-signatures”. In: Advances in Cryptology — CRYPTO 2021. Springer International Publishing, 2021. doi:
10.1007/978-3-030-84242-0_8. Also at ia.cr/2020/1261 (Cited on p. 28).

[RFC 8032] S. Josefsson and I. Liusvaara. “Edwards-Curve Digital Signature Algorithm (EdDSA)”. In: RFC 8032. Request for Comments (January 2017). Errata exists. doi: 10.17487/RFC8032.

[Sch90] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Springer New York, 1990. doi: 10.1007/0-387-34805-0_22. See
also J. Cryptology 4, pp. 161–174, 1991, DOI:10.1007/BF00196725 (Cited on p. 8).

[SS01] Douglas R. Stinson and Reto Strobl. “Provably Secure Distributed Schnorr Signatures and a (t, n) Threshold Scheme for Implicit Certificates”. In: Information Security and Privacy. ACISP 2001.
Springer Berlin Heidelberg, 2001. doi: 10.1007/3-540-47719-5_33 (Cited on p. 24).

25/26

https://doi.org/10.1007/978-3-030-84242-0_7
https://eprint.iacr.org/2020/1245
https://doi.org/10.1109/SP40001.2021.00042
https://eprint.iacr.org/2020/823
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/s13389-012-0027-1
https://eprint.iacr.org/2011/368
https://doi.org/10.1007/3-540-44750-4_24
https://doi.org/10.7146/brics.v1i29.21637
https://doi.org/10.1007/978-3-030-64357-7_4
https://eprint.iacr.org/2020/1244
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://doi.org/10.1109/SP.2019.00050
https://eprint.iacr.org/2018/417
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1137/0217017
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2022/374
https://doi.org/10.1007/978-3-030-84242-0_8
https://eprint.iacr.org/2020/1261
https://doi.org/10.17487/RFC8032
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-47719-5_33

EdDSA modes (and variants)

Table 6. EdDSA variants627

628 Type Standard Mode µ κ b = |d| s||ν GenNonce r Challenge χ

629 Det. EdDSA Ed25519 128 256 H0(d) H0(ν∥M) H0(R∥Q∥M)
630 Ed448 224 456 H1(d) H1(E4,0(ctx)∥ν∥M) H1(E4,0(ctx)∥R∥Q∥M)

631 HashEdDSA Ed25519ph 128 256 H0(d) H0(E2,1(ctx)∥ν∥H0(M)) H0(E2,1(ctx)∥R∥Q∥H0(M))
632 Ed448ph 224 456 H1(d) H1(E4,1(ctx)∥ν∥H2(M)) H1(E4,1(ctx)∥R∥Q∥H2(M))

633 Type Variation Mode µ κ b = |d| s||ν GenNonce r Challenge χ

634 Prob. Random — — — — ←$ Zq —
635 Hybrid — — — — H(ν ,rand, f (M)) —

Legend: See code Some symbols are better contextualized in Fig. 3. Det. (deterministic). Prob.
(probabilistic). s, ν (first and second halves, respectively, of Hash(d), also denoted as 1st and 2nd
digests of d). Ei, j(...) (encoding function, defined in FIPS 186 as domi(j,...), where i is 2 or 4,
corresponding to the Ed25519 or Ed448 curves, and j is 1 or 0, corresponding to whether or not
it is a “pre-hash” mode). H (some cryptographic hash function or extendable output function); H0
(SHA-512); H1 (SHAKE256-length-912); H2 (SHAKE256-length-512); rand (secret randomness
or any other secret material). The four deterministic modes (Det.) are based on Draft FIPS 186-5.
The two probabilistic variants (Prob.) produce signatures interchangeable w.r.t. EdDSA verification.

636

637

638

639

640

641

642

643

26/26

	Notes on Threshold EdDSA/Schnorr Signatures
	Cover
	Conventional EdDSA/Schnorr
	Outline
	Digital signatures — FIPS Pub 186-5 (Draft)
	Notation for group operations
	EdDSA-style scheme (simplified)
	The EdDSA signature formula sigma = (R, S)
	Unforgeability
	Binding
	Nonce implementation issues
	Comparing types of nonce generation
	On non-verifiable determinism
	Summary of conventional setting

	Threshold signatures
	Outline
	Threshold approach — intuition
	Distributed key-generation (DKG)
	Threshold Schnorr signing using a DKG-based approach
	An attempt at threshold Deterministic
	Threshold Deterministic Signatures
	Threshold Probabilistic Signatures
	Threshold comparison (informal)

	Considerations
	Outline
	Draft IR 8214B
	Developments

	Final slide
	Thank you for your attention!
	References

	References
	EdDSA modes (and variants)

